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Preface

The newly revised fourth edition of our Building Java Programs textbook is designed 
for use in a two-course introduction to computer science. We have class-tested it with 
thousands of undergraduates, most of whom were not computer science majors, in our 
CS1-CS2 sequence at the University of Washington. These courses are experiencing 
record enrollments, and other schools that have adopted our textbook report that stu-
dents are succeeding with our approach.

Introductory computer science courses are often seen as “killer” courses with high 
failure rates. But as Douglas Adams says in The Hitchhiker’s Guide to the Galaxy, “Don’t 
panic.” Students can master this material if they can learn it gradually. Our textbook uses 
a layered approach to introduce new syntax and concepts over multiple chapters.

Our textbook uses an “objects later” approach where programming fundamentals 
and procedural decomposition are taught before diving into object-oriented program-
ming. We have championed this approach, which we sometimes call “back to basics,” 
and have seen through years of experience that a broad range of scientists, engineers, 
and others can learn how to program in a procedural manner. Once we have built a 
solid foundation of procedural techniques, we turn to object-oriented programming. 
By the end of the course, students will have learned about both styles of programming. 

Here are some of the changes that we have made in the fourth edition:

	 •	 New chapter on functional programming with Java 8. As explained below, we 
have introduced a chapter that uses the new language features available in Java 8 
to discuss the core concepts of functional programming.

	 •	 New section on images and 2D pixel array manipulation. Image manipula-
tion is becoming increasingly popular, so we have expanded our DrawingPanel 
class to include features that support manipulating images as two-dimensional 
arrays of pixel values. This extra coverage will be particularly helpful for stu-
dents taking an AP/CS A course because of the heavy emphasis on two-dimen-
sional arrays on the AP exam.

	 •	 Expanded self-checks and programming exercises. Many chapters have 
received new self-check problems and programming exercises. There are roughly 
fifty total problems and exercises per chapter, all of which have been class-tested 
with real students and have solutions provided for instructors on our web site.

Since the publication of our third edition, Java 8 has been released. This new version 
supports a style of programming known as functional programming that is gaining in 

3

A01_REGE1686_04_GE_FM.indd   3 17/11/16   3:27 PM



popularity because of its ability to simply express complex algorithms that are more 
easily executed in parallel on machines with multiple processors. ACM and IEEE have 
released new guidelines for undergraduate computer science curricula, including a 
strong recommendation to cover functional programming concepts.

We have added a new Chapter 19 that covers most of the functional concepts 
from the new curriculum guidelines. The focus is on concepts, not on language 
features. As a result, it provides an introduction to several new Java 8 constructs 
but not a comprehensive coverage of all new language features. This provides 
flexibility to instructors since functional programming features can be covered as 
an advanced independent topic, incorporated along the way, or skipped entirely. 
Instructors can choose to start covering functional constructs along with tradi-
tional constructs as early as Chapter 6. See the dependency chart at the end of this 
section.

The following features have been retained from previous editions:

	 •	 Focus on problem solving. Many textbooks focus on language details when 
they introduce new constructs. We focus instead on problem solving. What new 
problems can be solved with each construct? What pitfalls are novices likely 
to encounter along the way? What are the most common ways to use a new 
construct?

	 •	 Emphasis on algorithmic thinking. Our procedural approach allows us to 
emphasize algorithmic problem solving: breaking a large problem into smaller 
problems, using pseudocode to refine an algorithm, and grappling with the chal-
lenge of expressing a large program algorithmically.

	 •	 Layered approach. Programming in Java involves many concepts that are dif-
ficult to learn all at once. Teaching Java to a novice is like trying to build a house 
of cards. Each new card has to be placed carefully. If the process is rushed and 
you try to place too many cards at once, the entire structure collapses. We teach 
new concepts gradually, layer by layer, allowing students to expand their under-
standing at a manageable pace.

	 •	 Case studies. We end most chapters with a significant case study that shows 
students how to develop a complex program in stages and how to test it as it is 
being developed. This structure allows us to demonstrate each new program-
ming construct in a rich context that can’t be achieved with short code exam-
ples. Several of the case studies were expanded and improved in the second 
edition.

	 •	 Utility as a CS1+CS2 textbook. In recent editions, we added chapters that extend 
the coverage of the book to cover all of the topics from our second course in com-
puter science, making the book usable for a two-course sequence. Chapters 12–19 
explore recursion, searching and sorting, stacks and queues, collection implemen-
tation, linked lists, binary trees, hash tables, heaps, and more. Chapter 12 also 
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Chapter

 
Control Flow

 
Data

Programming  
Techniques

 
Input/Output

1 methods String literals procedural 

decomposition
println, print

2 definite loops (for) variables, 

expressions, int, 

double

local variables, 

class constants, 

pseudocode

3 return values using objects parameters console input, 2D 

graphics (optional)

4 conditional  

(if/else)
char pre/post conditions, 

throwing exceptions
printf

5 indefinite loops 

(while)
boolean assertions,  

robust programs

6 Scanner token/line-based  

file processing

file I/O

Chapters 1–6 are designed to be worked through in order, with greater flexibility 
of study then beginning in Chapter 7. Chapter 6 may be skipped, although the case 
study in Chapter 7 involves reading from a file, a topic that is covered in Chapter 6.

Layers and Dependencies

Many introductory computer science books are language-oriented, but the early chap-
ters of our book are layered. For example, Java has many control structures (including 
for-loops, while-loops, and if/else-statements), and many books include all of these 
control structures in a single chapter. While that might make sense to someone who al-
ready knows how to program, it can be overwhelming for a novice who is learning how 
to program. We find that it is much more effective to spread these control structures 
into different chapters so that students learn one structure at a time rather than trying 
to learn them all at once.

The following table shows how the layered approach works in the first six chapters:

received a section on recursive backtracking, a powerful technique for exploring a 
set of possibilities for solving problems such as 8 Queens and Sudoku.
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The following is a dependency chart for the book:

Supplements

Answers to all self-check problems appear on the web site and are accessible to 
anyone. Our web site has the following additional resources for students:

	 •	 Online-only supplemental chapters, such as a chapter on creating Graphical User 
Interfaces

Chapters 1-6
Programming Fundamentals

Chapter 7
Arrays

Chapter 8
Classes

Chapter 9
Functional Programming

(except section 19.5)

Chapter 19
Section 19.5

Chapter 9
Inheritance,
Interfaces

Chapter 12
Recursion

Chapter 13
Searching,

Sorting
Chapter 10
ArrayLists

Chapter 11
Collections

Chapter 14
Stacks,
Queues

Chapter 15
Implementing
Collections

Chapter 16
Linked Lists

Chapter 17
Binary Trees

Chapter 18
Hashing,
Heaps
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	 •	 Source code and data files for all case studies and other complete program 
examples

	 •	 The DrawingPanel class used in the optional graphics Supplement 3G

Our web site has the following additional resources for teachers:

	 •	 PowerPoint slides suitable for lectures

	 •	 Solutions to exercises and programming projects, along with homework specifi-
cation documents for many projects

	 •	 Sample exams and solution keys

	 •	 Additional lab exercises and programming exercises with solution keys

	 •	 Closed lab creation tools to produce lab handouts with the instructor’s choice 
of problems integrated with the textbook

The materials are available at www.pearsonglobaleditions.com/reges.

MyProgrammingLab

MyProgrammingLab is an online practice and assessment tool that helps students fully 
grasp the logic, semantics, and syntax of programming. Through practice exercises 
and immediate, personalized feedback, MyProgrammingLab improves the program-
ming competence of beginning students who often struggle with basic concepts and 
paradigms of popular high-level programming languages. A self-study and homework 
tool, the MyProgrammingLab course consists of hundreds of small practice exercises 
organized around the structure of this textbook. For students, the system automatically 
detects errors in the logic and syntax of code submissions and offers targeted hints that 
enable students to figure out what went wrong, and why. For instructors, a comprehen-
sive grade book tracks correct and incorrect answers and stores the code inputted by 
students for review. 

For a full demonstration, to see feedback from instructors and students, or 
to adopt MyProgrammingLab for your course, visit the following web site:  
http://www.myprogramminglab.com/

VideoNotes

We have recorded a series of instructional videos to accompany the textbook. They are 
available at the following web site: www.pearsonglobaleditions.com/reges.

Roughly 3–4 videos are posted for each chapter. An icon in the margin of the page 
indicates when a VideoNote is available for a given topic. In each video, we spend 

VideoNote
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5–15 minutes walking through a particular concept or problem, talking about the 
challenges and methods necessary to solve it. These videos make a good supplement 
to the instruction given in lecture classes and in the textbook. Your new copy of the 
textbook has an access code that will allow you to view the videos.
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Introduction

This chapter begins with a review of some basic terminology about com-
puters and computer programming. Many of these concepts will come up 
in later chapters, so it will be useful to review them before we start delving 
into the details of how to program in Java.

We will begin our exploration of Java by looking at simple programs that 
produce output. This discussion will allow us to explore many elements 
that are common to all Java programs, while working with programs that 
are fairly simple in structure.

After we have reviewed the basic elements of Java programs, we will 
explore the technique of procedural decomposition by learning how to 
break up a Java program into several methods. Using this technique, we 
can break up complex tasks into smaller subtasks that are easier to manage 
and we can avoid redundancy in our program solutions.

Chapter 1

1.1	Basic Computing Concepts
■	 Why Programming?
■	 Hardware and Software
■	 The Digital Realm
■	 The Process of Programming
■	 Why Java?
■	 The Java Programming 

Environment

1.2	And Now—Java
■	 String Literals (Strings)
■	 System.out.println
■	 Escape Sequences
■	 print versus println
■	 Identifiers and Keywords
■	 A Complex Example: 

DrawFigures1
■	 Comments and Readability	

1.3	Program Errors
■	 Syntax Errors
■	 Logic Errors (Bugs)

1.4	Procedural Decomposition
■	 Static Methods
■	 Flow of Control
■	 Methods That Call Other 

Methods
■	 An Example Runtime Error

1.5	Case Study: DrawFigures
■	 Structured Version
■	 Final Version without 

Redundancy
■	 Analysis of Flow of Execution

Introduction to 
Java Programming
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28	 Chapter 1  Introduction to Java Programming

1.1 Basic Computing Concepts

Computers are pervasive in our daily lives, and, thanks to the Internet, they give us 
access to nearly limitless information. Some of this information is essential news, 
like the headlines at cnn.com. Computers let us share photos with our families and 
map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of which don’t 
much resemble the one on your desk or lap. Computers allow us to sequence the 
human genome and search for DNA patterns within it. Computers in recently manu-
factured cars monitor each vehicle’s status and motion. Digital music players such as 
Apple’s iPod actually have computers inside their small casings. Even the Roomba 
vacuum-cleaning robot houses a computer with complex instructions about how to 
dodge furniture while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer? Is a human 
being with a paper and pencil a computer? The next several sections attempt to 
address this question while introducing some basic terminology that will help prepare 
you to study programming.

Why Programming?

At most universities, the first course in computer science is a programming course. 
Many computer scientists are bothered by this because it leaves people with the 
impression that computer science is programming. While it is true that many trained 
computer scientists spend time programming, there is a lot more to the discipline. So 
why do we study programming first?

A Stanford computer scientist named Don Knuth answers this question by saying 
that the common thread for most computer scientists is that we all in some way work 
with algorithms.

Algorithm

A step-by-step description of how to accomplish a task.

Knuth is an expert in algorithms, so he is naturally biased toward thinking of them 
as the center of computer science. Still, he claims that what is most important is not 
the algorithms themselves, but rather the thought process that computer scientists 
employ to develop them. According to Knuth,

It has often been said that a person does not really understand something  
until after teaching it to someone else. Actually a person does not really  
understand something until after teaching it to a computer, i.e., expressing  
it as an algorithm.1

1Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the Study of Language and 
Information, 1996.
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1.1  Basic Computing Concepts� 29

Knuth is describing a thought process that is common to most of computer science, 
which he refers to as algorithmic thinking. We study programming not because it  
is the most important aspect of computer science, but because it is the best way to 
explain the approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a computer is and 
what computer science is all about. The Merriam-Webster dictionary defines the 
word “computer” as “one that computes.” Using that definition, all sorts of devices 
qualify as computers, including calculators, GPS navigation systems, and children’s 
toys like the Furby. Prior to the invention of electronic computers, it was common to 
refer to humans as computers. The nineteenth-century mathematician Charles Peirce, 
for example, was originally hired to work for the U.S. government as an “Assistant 
Computer” because his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many devices. But 
when computer scientists refer to a computer, we are usually thinking of a universal 
computation device that can be programmed to execute any algorithm. Computer sci-
ence, then, is the study of computational devices and the study of computation itself, 
including algorithms.

Algorithms are expressed as computer programs, and that is what this book is all 
about. But before we look at how to program, it will be useful to review some basic 
concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of instructions 
known as programs.

Program

A list of instructions to be carried out by a computer.

One key feature that differentiates a computer from a simpler machine like a cal-
culator is its versatility. The same computer can perform many different tasks (play-
ing games, computing income taxes, connecting to other computers around the 
world), depending on what program it is running at a given moment. A computer 
can run not only the programs that exist on it currently, but also new programs that 
haven’t even been written yet.

The physical components that make up a computer are collectively called hard-
ware. One of the most important pieces of hardware is the central processing unit, or 
CPU. The CPU is the “brain” of the computer: It is what executes the instructions. 
Also important is the computer’s memory (often called random access memory, or 
RAM, because the computer can access any part of that memory at any time). The 
computer uses its memory to store programs that are being executed, along with their 
data. RAM is limited in size and does not retain its contents when the computer is 
turned off. Therefore, computers generally also use a hard disk as a larger permanent 
storage area.
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Computer programs are collectively called software. The primary piece of soft-
ware running on a computer is its operating system. An operating system provides an 
environment in which many programs may be run at the same time; it also provides a 
bridge between those programs, the hardware, and the user (the person using the com-
puter). The programs that run inside the operating system are often called applications.

When the user selects a program for the operating system to run (e.g., by double-
clicking the program’s icon on the desktop), several things happen: The instructions 
for that program are loaded into the computer’s memory from the hard disk, the oper-
ating system allocates memory for that program to use, and the instructions to run the 
program are fed from memory to the CPU and executed sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose device that can  
be programmed. You will often hear people refer to modern computers as digital 
computers because of the way they operate.

Digital

Based on numbers that increase in discrete increments, such as the integers 
0, 1, 2, 3, etc.

Because computers are digital, everything that is stored on a computer is stored as a 
sequence of integers. This includes every program and every piece of data. An MP3 
file, for example, is simply a long sequence of integers that stores audio informa-
tion. Today we’re used to digital music, digital pictures, and digital movies, but in 
the 1940s, when the first computers were built, the idea of storing complex data in 
integer form was fairly unusual.

Not only are computers digital, storing all information as integers, but they are 
also binary, which means they store integers as binary numbers.

Binary Number

A number composed of just 0s and 1s, also known as a base-2 number.

Humans generally work with decimal or base-10 numbers, which match our phys-
iology (10 fingers and 10 toes). However, when we were designing the first comput-
ers, we wanted systems that would be easy to create and very reliable. It turned out 
to be simpler to build these systems on top of binary phenomena (e.g., a circuit being 
open or closed) rather than having 10 different states that would have to be distin-
guished from one another (e.g., 10 different voltage levels).

From a mathematical point of view, you can store things just as easily using 
binary numbers as you can using base-10 numbers. But since it is easier to construct 
a physical device that uses binary numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers find their con-
ventions unfamiliar. As a result, it is worth spending a little time reviewing how binary 
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