
GLOBAL
EDITION

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

GLOBAL
EDITION

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

Building Java™ Programs
A Back to Basics Approach
FOURTH EDITION

Stuart Reges • Marty Stepp

Building Java™
 Program

s
A Back to Basics Approach

Reges
Stepp

FO
U

RT
H

ED

IT
IO

N
G

LO
B

A
L

ED
IT

IO
N

Reges_04_129216168X_Final.indd 1 08/11/16 5:37 PM

Building Java Programs
A Back to Basics Approach

Stuart Reges
University of Washington

Marty Stepp
Stanford University

Fourth Edition
Global Edition

Boston  Columbus  Indianapolis  New York  San Francisco  Hoboken
Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montreal  Toronto

Delhi  Mexico City  Sao Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo

A01_REGE1686_04_GE_FM.indd 1 17/11/16 3:27 PM

Vice President, Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kristy Alaura
Acquisitions Editor, Global Editions: Sourabh Maheshwari
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram Van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project Management:

Scott Disanno
Program Manager: Carole Snyder
Project Editor, Global Editions: K.K. Neelakantan

Project Manager: Lakeside Editorial Services L.L.C.
Senior Specialist, Program Planning and Support:

Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions: Kay

Holman
Media Production Manager, Global Editions: Vikram

Kumar
Cover Design: Lumina Datamatics
R&P Manager: Rachel Youdelman
R&P Project Manager: Timothy Nicholls
Inventory Manager: Meredith Maresca
Cover Art: © Westend61 Premium/Shutterstock.com
Full-Service Project Management:

Apoorva Goel/Cenveo® Publisher Services

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

Acknowledgements of third-party content appear on pages 1219–1220, which constitute an extension of this copyright page.

PEARSON, and MYPROGRAMMINGLAB are exclusive trademarks in the U.S. and/or other countries owned by
Pearson Education, Inc. or its affiliates.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018
The rights of Stuart Reges and Marty Stepp to be identified as the authors of this work have been asserted by them
in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Building Java Programs: A Back to Basics Approach,
4th Edition, ISBN 978-0-13-432276-6, by Stuart Reges and Marty Stepp published by Pearson Education © 2017.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest
in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply
any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-16168-X
ISBN 13: 978-1-292-16168-6

Typeset in Monotype by Cenveo Publisher Services
Printed and bound in Malaysia.

A01_REGE1686_04_GE_FM.indd 2 14/12/16 6:05 PM

http://www.pearsonglobaleditions.com

Preface

The newly revised fourth edition of our Building Java Programs textbook is designed
for use in a two-course introduction to computer science. We have class-tested it with
thousands of undergraduates, most of whom were not computer science majors, in our
CS1-CS2 sequence at the University of Washington. These courses are experiencing
record enrollments, and other schools that have adopted our textbook report that stu-
dents are succeeding with our approach.

Introductory computer science courses are often seen as “killer” courses with high
failure rates. But as Douglas Adams says in The Hitchhiker’s Guide to the Galaxy, “Don’t
panic.” Students can master this material if they can learn it gradually. Our textbook uses
a layered approach to introduce new syntax and concepts over multiple chapters.

Our textbook uses an “objects later” approach where programming fundamentals
and procedural decomposition are taught before diving into object-oriented program-
ming. We have championed this approach, which we sometimes call “back to basics,”
and have seen through years of experience that a broad range of scientists, engineers,
and others can learn how to program in a procedural manner. Once we have built a
solid foundation of procedural techniques, we turn to object-oriented programming.
By the end of the course, students will have learned about both styles of programming.

Here are some of the changes that we have made in the fourth edition:

	 •	 New chapter on functional programming with Java 8. As explained below, we
have introduced a chapter that uses the new language features available in Java 8
to discuss the core concepts of functional programming.

	 •	 New section on images and 2D pixel array manipulation. Image manipula-
tion is becoming increasingly popular, so we have expanded our DrawingPanel
class to include features that support manipulating images as two-dimensional
arrays of pixel values. This extra coverage will be particularly helpful for stu-
dents taking an AP/CS A course because of the heavy emphasis on two-dimen-
sional arrays on the AP exam.

	 •	 Expanded self-checks and programming exercises. Many chapters have
received new self-check problems and programming exercises. There are roughly
fifty total problems and exercises per chapter, all of which have been class-tested
with real students and have solutions provided for instructors on our web site.

Since the publication of our third edition, Java 8 has been released. This new version
supports a style of programming known as functional programming that is gaining in

3

A01_REGE1686_04_GE_FM.indd 3 17/11/16 3:27 PM

popularity because of its ability to simply express complex algorithms that are more
easily executed in parallel on machines with multiple processors. ACM and IEEE have
released new guidelines for undergraduate computer science curricula, including a
strong recommendation to cover functional programming concepts.

We have added a new Chapter 19 that covers most of the functional concepts
from the new curriculum guidelines. The focus is on concepts, not on language
features. As a result, it provides an introduction to several new Java 8 constructs
but not a comprehensive coverage of all new language features. This provides
flexibility to instructors since functional programming features can be covered as
an advanced independent topic, incorporated along the way, or skipped entirely.
Instructors can choose to start covering functional constructs along with tradi-
tional constructs as early as Chapter 6. See the dependency chart at the end of this
section.

The following features have been retained from previous editions:

	 •	 Focus on problem solving. Many textbooks focus on language details when
they introduce new constructs. We focus instead on problem solving. What new
problems can be solved with each construct? What pitfalls are novices likely
to encounter along the way? What are the most common ways to use a new
construct?

	 •	 Emphasis on algorithmic thinking. Our procedural approach allows us to
emphasize algorithmic problem solving: breaking a large problem into smaller
problems, using pseudocode to refine an algorithm, and grappling with the chal-
lenge of expressing a large program algorithmically.

	 •	 Layered approach. Programming in Java involves many concepts that are dif-
ficult to learn all at once. Teaching Java to a novice is like trying to build a house
of cards. Each new card has to be placed carefully. If the process is rushed and
you try to place too many cards at once, the entire structure collapses. We teach
new concepts gradually, layer by layer, allowing students to expand their under-
standing at a manageable pace.

	 •	 Case studies. We end most chapters with a significant case study that shows
students how to develop a complex program in stages and how to test it as it is
being developed. This structure allows us to demonstrate each new program-
ming construct in a rich context that can’t be achieved with short code exam-
ples. Several of the case studies were expanded and improved in the second
edition.

	 •	 Utility as a CS1+CS2 textbook. In recent editions, we added chapters that extend
the coverage of the book to cover all of the topics from our second course in com-
puter science, making the book usable for a two-course sequence. Chapters 12–19
explore recursion, searching and sorting, stacks and queues, collection implemen-
tation, linked lists, binary trees, hash tables, heaps, and more. Chapter 12 also

4	 Preface

A01_REGE1686_04_GE_FM.indd 4 17/11/16 3:27 PM

Preface� 5

Chapter

Control Flow

Data

Programming
Techniques

Input/Output

1 methods String literals procedural

decomposition
println, print

2 definite loops (for) variables,

expressions, int,

double

local variables,

class constants,

pseudocode

3 return values using objects parameters console input, 2D

graphics (optional)

4 conditional

(if/else)
char pre/post conditions,

throwing exceptions
printf

5 indefinite loops

(while)
boolean assertions,

robust programs

6 Scanner token/line-based

file processing

file I/O

Chapters 1–6 are designed to be worked through in order, with greater flexibility
of study then beginning in Chapter 7. Chapter 6 may be skipped, although the case
study in Chapter 7 involves reading from a file, a topic that is covered in Chapter 6.

Layers and Dependencies

Many introductory computer science books are language-oriented, but the early chap-
ters of our book are layered. For example, Java has many control structures (including
for-loops, while-loops, and if/else-statements), and many books include all of these
control structures in a single chapter. While that might make sense to someone who al-
ready knows how to program, it can be overwhelming for a novice who is learning how
to program. We find that it is much more effective to spread these control structures
into different chapters so that students learn one structure at a time rather than trying
to learn them all at once.

The following table shows how the layered approach works in the first six chapters:

received a section on recursive backtracking, a powerful technique for exploring a
set of possibilities for solving problems such as 8 Queens and Sudoku.

A01_REGE1686_04_GE_FM.indd 5 17/11/16 3:27 PM

6	 Preface

The following is a dependency chart for the book:

Supplements

Answers to all self-check problems appear on the web site and are accessible to
anyone. Our web site has the following additional resources for students:

	 •	 Online-only supplemental chapters, such as a chapter on creating Graphical User
Interfaces

Chapters 1-6
Programming Fundamentals

Chapter 7
Arrays

Chapter 8
Classes

Chapter 9
Functional Programming

(except section 19.5)

Chapter 19
Section 19.5

Chapter 9
Inheritance,
Interfaces

Chapter 12
Recursion

Chapter 13
Searching,

Sorting
Chapter 10
ArrayLists

Chapter 11
Collections

Chapter 14
Stacks,
Queues

Chapter 15
Implementing
Collections

Chapter 16
Linked Lists

Chapter 17
Binary Trees

Chapter 18
Hashing,
Heaps

A01_REGE1686_04_GE_FM.indd 6 17/11/16 3:27 PM

Preface� 7

	 •	 Source code and data files for all case studies and other complete program
examples

	 •	 The DrawingPanel class used in the optional graphics Supplement 3G

Our web site has the following additional resources for teachers:

	 •	 PowerPoint slides suitable for lectures

	 •	 Solutions to exercises and programming projects, along with homework specifi-
cation documents for many projects

	 •	 Sample exams and solution keys

	 •	 Additional lab exercises and programming exercises with solution keys

	 •	 Closed lab creation tools to produce lab handouts with the instructor’s choice
of problems integrated with the textbook

The materials are available at www.pearsonglobaleditions.com/reges.

MyProgrammingLab

MyProgrammingLab is an online practice and assessment tool that helps students fully
grasp the logic, semantics, and syntax of programming. Through practice exercises
and immediate, personalized feedback, MyProgrammingLab improves the program-
ming competence of beginning students who often struggle with basic concepts and
paradigms of popular high-level programming languages. A self-study and homework
tool, the MyProgrammingLab course consists of hundreds of small practice exercises
organized around the structure of this textbook. For students, the system automatically
detects errors in the logic and syntax of code submissions and offers targeted hints that
enable students to figure out what went wrong, and why. For instructors, a comprehen-
sive grade book tracks correct and incorrect answers and stores the code inputted by
students for review.

For a full demonstration, to see feedback from instructors and students, or
to adopt MyProgrammingLab for your course, visit the following web site:
http://www.myprogramminglab.com/

VideoNotes

We have recorded a series of instructional videos to accompany the textbook. They are
available at the following web site: www.pearsonglobaleditions.com/reges.

Roughly 3–4 videos are posted for each chapter. An icon in the margin of the page
indicates when a VideoNote is available for a given topic. In each video, we spend

VideoNote

A01_REGE1686_04_GE_FM.indd 7 06/12/16 11:01 PM

http://www.pearsonglobaleditions.com/reges
http://www.myprogramminglab.com/
http://www.pearsonglobaleditions.com/reges

8	 Preface

5–15 minutes walking through a particular concept or problem, talking about the
challenges and methods necessary to solve it. These videos make a good supplement
to the instruction given in lecture classes and in the textbook. Your new copy of the
textbook has an access code that will allow you to view the videos.

Acknowledgments

First, we would like to thank the many colleagues, students, and teaching assistants
who have used and commented on early drafts of this text. We could not have written
this book without their input. Special thanks go to Hélène Martin, who pored over
early versions of our first edition chapters to find errors and to identify rough patches
that needed work. We would also like to thank instructor Benson Limketkai for spend-
ing many hours performing a technical proofread of the second edition.

Second, we would like to thank the talented pool of reviewers who guided us in
the process of creating this textbook:

	 •	 Greg Anderson, Weber State University

	 •	 Delroy A. Brinkerhoff, Weber State University

	 •	 Ed Brunjes, Miramar Community College

	 •	 Tom Capaul, Eastern Washington University

	 •	 Tom Cortina, Carnegie Mellon University

	 •	 Charles Dierbach, Towson University

	 •	 H.E. Dunsmore, Purdue University

	 •	 Michael Eckmann, Skidmore College

	 •	 Mary Anne Egan, Siena College

	 •	 Leonard J. Garrett, Temple University

	 •	 Ahmad Ghafarian, North Georgia College & State University

	 •	 Raj Gill, Anne Arundel Community College

	 •	 Michael Hostetler, Park University

	 •	 David Hovemeyer, York College of Pennsylvania

	 •	 Chenglie Hu, Carroll College

	 •	 Philip Isenhour, Virginia Polytechnic Institute

	 •	 Andree Jacobson, University of New Mexico

	 •	 David C. Kamper, Sr., Northeastern Illinois University

	 •	 Simon G.M. Koo, University of San Diego

	 •	 Evan Korth, New York University

	 •	 Joan Krone, Denison University

	 •	 John H.E.F. Lasseter, Fairfield University

A01_REGE1686_04_GE_FM.indd 8 17/11/16 3:27 PM

Preface� 9

	 •	 Eric Matson, Wright State University

	 •	 Kathryn S. McKinley, University of Texas, Austin

	 •	 Jerry Mead, Bucknell University

	 •	 George Medelinskas, Northern Essex Community College

	 •	 John Neitzke, Truman State University

	 •	 Dale E. Parson, Kutztown University

	 •	 Richard E. Pattis, Carnegie Mellon University

	 •	 Frederick Pratter, Eastern Oregon University

	 •	 Roger Priebe, University of Texas, Austin

	 •	 Dehu Qi, Lamar University

	 •	 John Rager, Amherst College

	 •	 Amala V.S. Rajan, Middlesex University

	 •	 Craig Reinhart, California Lutheran University

	 •	 Mike Scott, University of Texas, Austin

	 •	 Alexa Sharp, Oberlin College

	 •	 Tom Stokke, University of North Dakota

	 •	 Leigh Ann Sudol, Fox Lane High School

	 •	 Ronald F. Taylor, Wright State University

	 •	 Andy Ray Terrel, University of Chicago

	 •	 Scott Thede, DePauw University

	 •	 Megan Thomas, California State University, Stanislaus

	 •	 Dwight Tuinstra, SUNY Potsdam

	 •	 Jeannie Turner, Sayre School

	 •	 Tammy VanDeGrift, University of Portland

	 •	 Thomas John VanDrunen, Wheaton College

	 •	 Neal R. Wagner, University of Texas, San Antonio

	 •	 Jiangping Wang, Webster University

	 •	 Yang Wang, Missouri State University

	 •	 Stephen Weiss, University of North Carolina at Chapel Hill

	 •	 Laurie Werner, Miami University

	 •	 Dianna Xu, Bryn Mawr College

	 •	 Carol Zander, University of Washington, Bothell

Finally, we would like to thank the great staff at Pearson who helped produce the
book. Michelle Brown, Jeff Holcomb, Maurene Goo, Patty Mahtani, Nancy Kotary,
and Kathleen Kenny did great work preparing the first edition. Our copy editors
and the staff of Aptara Corp, including Heather Sisan, Brian Baker, Brendan Short,

A01_REGE1686_04_GE_FM.indd 9 17/11/16 3:27 PM

and Rachel Head, caught many errors and improved the quality of the writing.
Marilyn Lloyd and Chelsea Bell served well as project manager and editorial assis-
tant respectively on prior editions. For their help with the third edition we would like
to thank Kayla Smith-Tarbox, Production Project Manager, and Jenah Blitz-Stoehr,
Computer Science Editorial Assistant. Mohinder Singh and the staff at Aptara, Inc.,
were also very helpful in the final production of the third edition. For their great
work on production of the fourth edition, we thank Louise Capulli and the staff of
Lakeside Editorial Services, along with Carole Snyder at Pearson. Special thanks go
to our lead editor at Pearson, Matt Goldstein, who has believed in the concept of our
book from day one. We couldn’t have finished this job without all of their hard work
and support.

Stuart Reges
Marty Stepp

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge the following people for their contribu-
tions to the Global Edition.

Contributor

Ankur Saxena, Amity University

Reviewers

Arup Bhattacharya, RCC Institute of Technology

Soumen Mukherjee, RCC Institute of Technology

Khyat Sharma

10	 Preface

A01_REGE1686_04_GE_FM.indd 10 14/12/16 5:16 PM

A01_REGE1686_04_GE_FM.indd 11 12/12/16 5:31 pm

LOCATION OF VIDEO NOTES IN THE TEXT
www.pearsonglobaleditions.com/reges

Chapter 1	 Pages 57, 66

Chapter 2	 Pages 91, 100, 115, 123, 136

Chapter 3	 Pages 167, 182, 187, 193

Chapter 3G	 Pages 223, 241

Chapter 4	 Pages 269, 277, 304

Chapter 5	 Pages 350, 353, 355, 359, 382

Chapter 6	 Pages 422, 435, 449

Chapter 7	 Pages 484, 491, 510, 531

Chapter 8	 Pages 561, 573, 581, 594

Chapter 9	 Pages 623, 636, 652

Chapter 10	 Pages 698, 703, 712

Chapter 11	 Pages 742, 755, 763

Chapter 12	 Pages 790, 798, 835

Chapter 13	 Pages 860, 863, 869

Chapter 14	 Pages 915, 922

Chapter 15	 Pages 956, 962, 966

Chapter 16	 Pages 998, 1005, 1018

Chapter 17	 Pages 1063, 1064, 1074

Chapter 18	 Pages 1099, 1118

VideoNote

12

A01_REGE1686_04_GE_FM.indd 12 17/11/16 3:27 PM

http://www.pearsonglobaleditions.com/reges

Brief Contents

Chapter 1	 Introduction to Java Programming� 27

Chapter 2	 Primitive Data and Definite Loops� 89

Chapter 3	 Introduction to Parameters and Objects� 163

Supplement 3G	 Graphics (Optional)� 222

Chapter 4	 Conditional Execution� 264

Chapter 5	 Program Logic and Indefinite Loops� 341

Chapter 6	 File Processing� 413

Chapter 7	 Arrays� 469

Chapter 8	 Classes� 556

Chapter 9	 Inheritance and Interfaces� 613

Chapter 10	 ArrayLists� 688

Chapter 11	 Java Collections Framework� 741

Chapter 12	 Recursion� 780

Chapter 13	 Searching and Sorting� 858

Chapter 14	 Stacks and Queues� 910

Chapter 15	 Implementing a Collection Class� 948

Chapter 16	 Linked Lists� 991

Chapter 17	 Binary Trees� 1043

Chapter 18	 Advanced Data Structures� 1097

Chapter 19	 Functional Programming with Java 8� 1133

Appendix A	 Java Summary� 1175

Appendix B	 The Java API Specification and Javadoc Comments� 1190

Appendix C	 Additional Java Syntax� 1196

13

A01_REGE1686_04_GE_FM.indd 13 14/12/16 5:17 PM

561590_MILL_MICRO_FM_ppi-xxvi.indd 2 24/11/14 5:26 PM

This page intentionally left blank

 Contents

Chapter 1 Introduction to Java Programming	 27

1.1	 Basic Computing Concepts	 28
Why Programming?	 28
Hardware and Software	 29
The Digital Realm	 30
The Process of Programming	 32
Why Java?	 33
The Java Programming Environment	 34

1.2	 And Now—Java	 36
String Literals (Strings)	 40
System.out.println	 41
Escape Sequences	 41
print versus println	 43
Identifiers and Keywords	 44
A Complex Example: DrawFigures1	 46
Comments and Readability	 47

1.3	 Program Errors	 50
Syntax Errors	 50
Logic Errors (Bugs)	 54

1.4	 Procedural Decomposition	 54
Static Methods	 57
Flow of Control	 60
Methods That Call Other Methods	 62
An Example Runtime Error	 65

1.5	 Case Study: DrawFigures	 66
Structured Version	 67
Final Version without Redundancy	 69
Analysis of Flow of Execution	 70

Chapter 2 Primitive Data and Definite Loops	 89

2.1	 Basic Data Concepts	 90
Primitive Types	 90

15

A01_REGE1686_04_GE_FM.indd 15 17/11/16 3:27 PM

Expressions	 91
Literals	 93
Arithmetic Operators	 94
Precedence	 96
Mixing Types and Casting	 99

2.2	 Variables	 100
Assignment/Declaration Variations	 105
String Concatenation	 108
Increment/Decrement Operators	 110
Variables and Mixing Types	 113

2.3	 The for Loop	 115
Tracing for Loops	 117
for Loop Patterns	 121
Nested for Loops	 123

2.4	 Managing Complexity	 125
Scope	 125
Pseudocode	 131
Class Constants	 134

2.5	 Case Study: Hourglass Figure	 136
Problem Decomposition and Pseudocode	 137
Initial Structured Version	 139
Adding a Class Constant	 140
Further Variations	 143

Chapter 3 Introduction to Parameters
and Objects	 163

3.1	 Parameters	 164
The Mechanics of Parameters	 167
Limitations of Parameters	 171
Multiple Parameters	 174
Parameters versus Constants	 177
Overloading of Methods	 177

3.2	 Methods That Return Values	 178
The Math Class	 179
Defining Methods That Return Values	 182

3.3	 Using Objects	 186
String Objects	 187
Interactive Programs and Scanner Objects	 193
Sample Interactive Program	 196

16	 Contents

A01_REGE1686_04_GE_FM.indd 16 17/11/16 3:27 PM

3.4	 Case Study: Projectile Trajectory	 199
Unstructured Solution	 203
Structured Solution	 205

Supplement 3G Graphics (Optional)	 222

3G.1	 Introduction to Graphics	 223
DrawingPanel	 223
Drawing Lines and Shapes	 224
Colors	 229
Drawing with Loops	 232
Text and Fonts	 236
Images	 239

3G.2	 Procedural Decomposition with Graphics	 241
A Larger Example: DrawDiamonds	 242

3G.3	 Case Study: Pyramids	 245
Unstructured Partial Solution	 246
Generalizing the Drawing of Pyramids	 248
Complete Structured Solution	 249

Chapter 4 Conditional Execution	 264

4.1	 if/else Statements	 265
Relational Operators	 267
Nested if/else Statements	 269
Object Equality	 276
Factoring if/else Statements	 277
Testing Multiple Conditions	 279

4.2	 Cumulative Algorithms	 280
Cumulative Sum	 280
Min/Max Loops	 282
Cumulative Sum with if	 286
Roundoff Errors	 288

4.3	 Text Processing	 291
The char Type	 291
char versus int	 292
Cumulative Text Algorithms	 293
System.out.printf	 295

4.4	 Methods with Conditional Execution	 300
Preconditions and Postconditions	 300
Throwing Exceptions	 300

Contents� 17

A01_REGE1686_04_GE_FM.indd 17 17/11/16 3:27 PM

Revisiting Return Values	 304
Reasoning about Paths	 309

4.5	 Case Study: Body Mass Index	 311
One-Person Unstructured Solution	 312
Two-Person Unstructured Solution	 315
Two-Person Structured Solution	 317
Procedural Design Heuristics	 321

Chapter 5 Program Logic and Indefinite Loops	 341

5.1	 The while Loop	 342
A Loop to Find the Smallest Divisor	 343
Random Numbers	 346
Simulations	 350
do/while Loop	 351

5.2	 Fencepost Algorithms	 353
Sentinel Loops	 355
Fencepost with if	 356

5.3	 The boolean Type	 359
Logical Operators	 361
Short-Circuited Evaluation	 364
boolean Variables and Flags	 368
Boolean Zen	 370
Negating Boolean Expressions	 373

5.4	 User Errors	 374
Scanner Lookahead	 375
Handling User Errors	 377

5.5	 Assertions and Program Logic	 379
Reasoning about Assertions	 381
A Detailed Assertions Example	 382

5.6	 Case Study: NumberGuess	 387
Initial Version without Hinting	 387
Randomized Version with Hinting	 389
Final Robust Version	 393

Chapter 6 File Processing	 413

6.1	 File-Reading Basics	 414
Data, Data Everywhere	 414

18	 Contents

A01_REGE1686_04_GE_FM.indd 18 17/11/16 3:27 PM

Files and File Objects	 414
Reading a File with a Scanner	 417

6.2	 Details of Token-Based Processing	 422
Structure of Files and Consuming Input	 424
Scanner Parameters	 429
Paths and Directories	 430
A More Complex Input File	 433

6.3	 Line-Based Processing	 435
String Scanners and Line/Token Combinations	 436

6.4	 Advanced File Processing	 441
Output Files with PrintStream	 441
Guaranteeing That Files Can Be Read	 446

6.5	 Case Study: Zip Code Lookup	 449

Chapter 7 Arrays	 469

7.1	 Array Basics	 470
Constructing and Traversing an Array	 470
Accessing an Array	 474
A Complete Array Program	 477
Random Access	 481
Arrays and Methods	 484
The For-Each Loop	 487
Initializing Arrays	 489
The Arrays Class	 490

7.2	 Array-Traversal Algorithms	 491
Printing an Array	 492
Searching and Replacing	 494
Testing for Equality	 497
Reversing an Array	 498
String Traversal Algorithms	 503
Functional Approach	 504

7.3	 Reference Semantics	 505
Multiple Objects	 507

7.4	 Advanced Array Techniques	 510
Shifting Values in an Array	 510
Arrays of Objects	 514
Command-Line Arguments	 516
Nested Loop Algorithms	 516

Contents� 19

A01_REGE1686_04_GE_FM.indd 19 17/11/16 3:27 PM

7.5	 Multidimensional Arrays	 518
Rectangular Two-Dimensional Arrays	 518
Jagged Arrays	 520

7.6	 Arrays of Pixels	 525

7.7	 Case Study: Benford’s Law	 530
Tallying Values	 531
Completing the Program	 535

Chapter 8 Classes	 556

8.1	 Object-Oriented Programming	 557
Classes and Objects	 558
Point Objects	 560

8.2	 Object State and Behavior	 561
Object State: Fields	 562
Object Behavior: Methods	 564
The Implicit Parameter	 567
Mutators and Accessors	 569
The toString Method	 571

8.3	 Object Initialization: Constructors	 573
The Keyword this	 578
Multiple Constructors	 580

8.4	 Encapsulation 	 581
Private Fields	 582
Class Invariants	 588
Changing Internal Implementations	 592

8.5	 Case Study: Designing a Stock Class	 594
Object-Oriented Design Heuristics	 595
Stock Fields and Method Headers	 597
Stock Method and Constructor Implementation	 599

Chapter 9 Inheritance and Interfaces	 613

9.1	 Inheritance Basics	 614
Nonprogramming Hierarchies	 615
Extending a Class	 617
Overriding Methods	 621

20	 Contents

A01_REGE1686_04_GE_FM.indd 20 17/11/16 3:27 PM

9.2	 Interacting with the Superclass	 623
Calling Overridden Methods	 623
Accessing Inherited Fields	 624
Calling a Superclass’s Constructor	 626
DividendStock Behavior	 628
The Object Class	 630
The equals Method	 631
The instanceof Keyword	 634

9.3	 Polymorphism	 636
Polymorphism Mechanics	 639
Interpreting Inheritance Code	 641
Interpreting Complex Calls	 643

9.4	 Inheritance and Design	 646
A Misuse of Inheritance	 646
Is-a Versus Has-a Relationships	 649
Graphics2D	 650

9.5	 Interfaces	 652
An Interface for Shapes	 653
Implementing an Interface	 655
Benefits of Interfaces	 658

9.6	 Case Study: Financial Class Hierarchy	 660
Designing the Classes	 661
Redundant Implementation	 665
Abstract Classes	 668

Chapter 10 ArrayLists	 688

10.1	 ArrayLists	 689
Basic ArrayList Operations	 690
ArrayList Searching Methods	 693
A Complete ArrayList Program	 696
Adding to and Removing from an ArrayList	 698
Using the For-Each Loop with ArrayLists	 702
Wrapper Classes	 703

10.2	 The Comparable Interface	 706
Natural Ordering and compareTo	 708
Implementing the Comparable Interface	 712

10.3	 Case Study: Vocabulary Comparison	 718
Some Efficiency Considerations	 718
Version 1: Compute Vocabulary	 721

Contents� 21

A01_REGE1686_04_GE_FM.indd 21 17/11/16 3:27 PM

Version 2: Compute Overlap	 724
Version 3: Complete Program	 729

Chapter 11 Java Collections Framework	 741

11.1	 Lists� 742
Collections	 742
LinkedList versus ArrayList	 743
Iterators	 746
Abstract Data Types (ADTs)	 750
LinkedList Case Study: Sieve	 752

11.2	 Sets� 755
Set Concepts	 756
TreeSet versus HashSet	 758
Set Operations	 759
Set Case Study: Lottery	 761

11.3	 Maps� 763
Basic Map Operations	 764
Map Views (keySet and values)	 766
TreeMap versus HashMap	 767
Map Case Study: WordCount	 768
Collection Overview	 771

Chapter 12 Recursion	 780

12.1	 Thinking Recursively	 781
A Nonprogramming Example	 781
An Iterative Solution Converted to Recursion	 784
Structure of Recursive Solutions	 786

12.2	 A Better Example of Recursion	 788
Mechanics of Recursion	 790

12.3	 Recursive Functions and Data	 798
Integer Exponentiation	 798
Greatest Common Divisor	 801
Directory Crawler	 807
Helper Methods	 811

12.4	 Recursive Graphics	 814

22	 Contents

A01_REGE1686_04_GE_FM.indd 22 17/11/16 3:27 PM

12.5	 Recursive Backtracking	 818
A Simple Example: Traveling North/East	 819
8 Queens Puzzle	 824
Solving Sudoku Puzzles	 831

12.6	 Case Study: Prefix Evaluator	 835
Infix, Prefix, and Postfix Notation	 835
Evaluating Prefix Expressions	 836
Complete Program	 839

Chapter 13 Searching and Sorting	 858

13.1	 Searching and Sorting in the Java Class Libraries	 859
Binary Search	 860
Sorting	 863
Shuffling	 864
Custom Ordering with Comparators	 865

13.2	 Program Complexity	 869
Empirical Analysis	 870
Complexity Classes	 876

13.3	 Implementing Searching and Sorting Algorithms	 878
Sequential Search	 879
Binary Search	 880
Recursive Binary Search	 883
Searching Objects	 886
Selection Sort	 877

13.4	 Case Study: Implementing Merge Sort	 890
Splitting and Merging Arrays	 891
Recursive Merge Sort	 894
Complete Program	 897

Chapter 14 Stacks and Queues 	 910

14.1	 Stack/Queue Basics	 911
Stack Concepts	 911
Queue Concepts	 914

14.2	 Common Stack/Queue Operations	 915
Transferring Between Stacks and Queues	 917
Sum of a Queue	 918
Sum of a Stack	 919

Contents� 23

A01_REGE1686_04_GE_FM.indd 23 17/11/16 3:27 PM

14.3	 Complex Stack/Queue Operations	 922
Removing Values from a Queue	 922
Comparing Two Stacks for Similarity	 924

14.4	 Case Study: Expression Evaluator	 926
Splitting into Tokens	 927
The Evaluator	 932

Chapter 15 Implementing a Collection Class	 948

15.1	 Simple ArrayIntList	 949
Adding and Printing	 949
Thinking about Encapsulation	 955
Dealing with the Middle of the List	 956
Another Constructor and a Constant	 961
Preconditions and Postconditions	 962

15.2	 A More Complete ArrayIntList	 966
Throwing Exceptions	 966
Convenience Methods	 969

15.3	 Advanced Features	 972
Resizing When Necessary	 972
Adding an Iterator	 974

15.4	 ArrayList<E>	 980

Chapter 16 Linked Lists	 991

16.1	 Working with Nodes	 992
Constructing a List	 993
List Basics	 995
Manipulating Nodes	 998
Traversing a List	 1001

16.2	 A Linked List Class	 1005
Simple LinkedIntList	 1005
Appending add	 1007
The Middle of the List	 1011

16.3	 A Complex List Operation	 1018
Inchworm Approach	 1023

16.4	 An IntList Interface	 1024

24	 Contents

A01_REGE1686_04_GE_FM.indd 24 17/11/16 3:27 PM

16.5	 LinkedList<E>	 1027
Linked List Variations	 1028
Linked List Iterators	 1031
Other Code Details	 1033

Chapter 17 Binary Trees	 1043

17.1	 Binary Tree Basics	 1044
Node and Tree Classes	 1047

17.2	 Tree Traversals	 1048
Constructing and Viewing a Tree	 1054

17.3	 Common Tree Operations	 1063
Sum of a Tree	 1063
Counting Levels	 1064
Counting Leaves	 1066

17.4	 Binary Search Trees	 1067
The Binary Search Tree Property	 1068
Building a Binary Search Tree	 1070
The Pattern x = change(x)	 1074
Searching the Tree	 1077
Binary Search Tree Complexity	 1081

17.5	 SearchTree<E>	 1082

Chapter 18 Advanced Data Structures	 1097

18.1	 Hashing	 1098
Array Set Implementations	 1098
Hash Functions and Hash Tables	 1099
Collisions	 1101
Rehashing	 1106
Hashing Non-Integer Data	 1109
Hash Map Implementation	 1112

18.2	 Priority Queues and Heaps	 1113
Priority Queues	 1113
Introduction to Heaps	 1115
Removing from a Heap	 1117
Adding to a Heap	 1118
Array Heap Implementation	 1120
Heap Sort	 1124

Contents� 25

A01_REGE1686_04_GE_FM.indd 25 17/11/16 3:27 PM

26	 Contents

Chapter 19 �Functional Programming
with Java 8	 1133

19.1	 Effect-Free Programming	 1134

19.2	 First-Class Functions	 1137
Lambda Expressions	 1140

19.3	 Streams	 1143
Basic Idea	 1143
Using Map	 1145
Using Filter	 1146
Using Reduce	 1148
Optional Results	 1149

19.4	 Function Closures	 1150

19.5	 Higher-Order Operations on Collections	 1153
Working with Arrays	 1154
Working with Lists	 1155
Working with Files	 1159

19.6	 Case Study: Perfect Numbers	 1160
Computing Sums	 1161
Incorporating Square Root	 1164
Just Five and Leveraging Concurrency	 1167

Appendix A	 Java Summary	 1175

Appendix B	� The Java API Specification
and Javadoc Comments	 1190

Appendix C	 Additional Java Syntax	 1196

Index� 1205

Credits� 1219

A01_REGE1686_04_GE_FM.indd 26 17/11/16 3:27 PM

Introduction

This chapter begins with a review of some basic terminology about com-
puters and computer programming. Many of these concepts will come up
in later chapters, so it will be useful to review them before we start delving
into the details of how to program in Java.

We will begin our exploration of Java by looking at simple programs that
produce output. This discussion will allow us to explore many elements
that are common to all Java programs, while working with programs that
are fairly simple in structure.

After we have reviewed the basic elements of Java programs, we will
explore the technique of procedural decomposition by learning how to
break up a Java program into several methods. Using this technique, we
can break up complex tasks into smaller subtasks that are easier to manage
and we can avoid redundancy in our program solutions.

Chapter 1

1.1	Basic Computing Concepts
■	 Why Programming?
■	 Hardware and Software
■	 The Digital Realm
■	 The Process of Programming
■	 Why Java?
■	 The Java Programming

Environment

1.2	And Now—Java
■	 String Literals (Strings)
■	 System.out.println
■	 Escape Sequences
■	 print versus println
■	 Identifiers and Keywords
■	 A Complex Example:

DrawFigures1
■	 Comments and Readability	

1.3	Program Errors
■	 Syntax Errors
■	 Logic Errors (Bugs)

1.4	Procedural Decomposition
■	 Static Methods
■	 Flow of Control
■	 Methods That Call Other

Methods
■	 An Example Runtime Error

1.5	Case Study: DrawFigures
■	 Structured Version
■	 Final Version without

Redundancy
■	 Analysis of Flow of Execution

Introduction to
Java Programming

27

M01_REGE1686_04_GE_C01.indd 27 04/11/16 2:34 PM

28	 Chapter 1 Introduction to Java Programming

1.1 Basic Computing Concepts

Computers are pervasive in our daily lives, and, thanks to the Internet, they give us
access to nearly limitless information. Some of this information is essential news,
like the headlines at cnn.com. Computers let us share photos with our families and
map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of which don’t
much resemble the one on your desk or lap. Computers allow us to sequence the
human genome and search for DNA patterns within it. Computers in recently manu-
factured cars monitor each vehicle’s status and motion. Digital music players such as
Apple’s iPod actually have computers inside their small casings. Even the Roomba
vacuum-cleaning robot houses a computer with complex instructions about how to
dodge furniture while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer? Is a human
being with a paper and pencil a computer? The next several sections attempt to
address this question while introducing some basic terminology that will help prepare
you to study programming.

Why Programming?

At most universities, the first course in computer science is a programming course.
Many computer scientists are bothered by this because it leaves people with the
impression that computer science is programming. While it is true that many trained
computer scientists spend time programming, there is a lot more to the discipline. So
why do we study programming first?

A Stanford computer scientist named Don Knuth answers this question by saying
that the common thread for most computer scientists is that we all in some way work
with algorithms.

Algorithm

A step-by-step description of how to accomplish a task.

Knuth is an expert in algorithms, so he is naturally biased toward thinking of them
as the center of computer science. Still, he claims that what is most important is not
the algorithms themselves, but rather the thought process that computer scientists
employ to develop them. According to Knuth,

It has often been said that a person does not really understand something
until after teaching it to someone else. Actually a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm.1

1Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the Study of Language and
Information, 1996.

M01_REGE1686_04_GE_C01.indd 28 04/11/16 2:34 PM

1.1 Basic Computing Concepts� 29

Knuth is describing a thought process that is common to most of computer science,
which he refers to as algorithmic thinking. We study programming not because it
is the most important aspect of computer science, but because it is the best way to
explain the approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a computer is and
what computer science is all about. The Merriam-Webster dictionary defines the
word “computer” as “one that computes.” Using that definition, all sorts of devices
qualify as computers, including calculators, GPS navigation systems, and children’s
toys like the Furby. Prior to the invention of electronic computers, it was common to
refer to humans as computers. The nineteenth-century mathematician Charles Peirce,
for example, was originally hired to work for the U.S. government as an “Assistant
Computer” because his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many devices. But
when computer scientists refer to a computer, we are usually thinking of a universal
computation device that can be programmed to execute any algorithm. Computer sci-
ence, then, is the study of computational devices and the study of computation itself,
including algorithms.

Algorithms are expressed as computer programs, and that is what this book is all
about. But before we look at how to program, it will be useful to review some basic
concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of instructions
known as programs.

Program

A list of instructions to be carried out by a computer.

One key feature that differentiates a computer from a simpler machine like a cal-
culator is its versatility. The same computer can perform many different tasks (play-
ing games, computing income taxes, connecting to other computers around the
world), depending on what program it is running at a given moment. A computer
can run not only the programs that exist on it currently, but also new programs that
haven’t even been written yet.

The physical components that make up a computer are collectively called hard-
ware. One of the most important pieces of hardware is the central processing unit, or
CPU. The CPU is the “brain” of the computer: It is what executes the instructions.
Also important is the computer’s memory (often called random access memory, or
RAM, because the computer can access any part of that memory at any time). The
computer uses its memory to store programs that are being executed, along with their
data. RAM is limited in size and does not retain its contents when the computer is
turned off. Therefore, computers generally also use a hard disk as a larger permanent
storage area.

M01_REGE1686_04_GE_C01.indd 29 04/11/16 2:34 PM

30	 Chapter 1 Introduction to Java Programming

Computer programs are collectively called software. The primary piece of soft-
ware running on a computer is its operating system. An operating system provides an
environment in which many programs may be run at the same time; it also provides a
bridge between those programs, the hardware, and the user (the person using the com-
puter). The programs that run inside the operating system are often called applications.

When the user selects a program for the operating system to run (e.g., by double-
clicking the program’s icon on the desktop), several things happen: The instructions
for that program are loaded into the computer’s memory from the hard disk, the oper-
ating system allocates memory for that program to use, and the instructions to run the
program are fed from memory to the CPU and executed sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose device that can
be programmed. You will often hear people refer to modern computers as digital
computers because of the way they operate.

Digital

Based on numbers that increase in discrete increments, such as the integers
0, 1, 2, 3, etc.

Because computers are digital, everything that is stored on a computer is stored as a
sequence of integers. This includes every program and every piece of data. An MP3
file, for example, is simply a long sequence of integers that stores audio informa-
tion. Today we’re used to digital music, digital pictures, and digital movies, but in
the 1940s, when the first computers were built, the idea of storing complex data in
integer form was fairly unusual.

Not only are computers digital, storing all information as integers, but they are
also binary, which means they store integers as binary numbers.

Binary Number

A number composed of just 0s and 1s, also known as a base-2 number.

Humans generally work with decimal or base-10 numbers, which match our phys-
iology (10 fingers and 10 toes). However, when we were designing the first comput-
ers, we wanted systems that would be easy to create and very reliable. It turned out
to be simpler to build these systems on top of binary phenomena (e.g., a circuit being
open or closed) rather than having 10 different states that would have to be distin-
guished from one another (e.g., 10 different voltage levels).

From a mathematical point of view, you can store things just as easily using
binary numbers as you can using base-10 numbers. But since it is easier to construct
a physical device that uses binary numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers find their con-
ventions unfamiliar. As a result, it is worth spending a little time reviewing how binary

M01_REGE1686_04_GE_C01.indd 30 04/11/16 2:34 PM

